11/6に連続公開講座「データサイエンス時代の言語教育」(2)で講演します

2021年11月6日土曜日に,名古屋大学大学院人文学研究科英語教育分野主催の連続公開講座『データサイエンス時代の英語教育』(2)で『一般化線形混合モデルの実践 — 気をつけたい三つのポイント』というタイトルの講演をします。

名古屋大学大学院人文学研究科は私が所属していた研究科ではありませんが,大学院の再編があり私がお世話になった先生方が所属している研究科であり,私の後輩にあたる院生も人文学研究科に所属しています。そういう縁もあってお話をいただきました。私が統計の話をするというのはかなりハードルが高い(統計の専門家ではないですし知識と技術に自信があるわけでも正直ない)と思ったのですが,こういう機会をいただくことでまた自分の知識を更新し,さらにレベルアップする機会にもなると思ったので,お引き受けすることにしました。

フライヤーに要旨も載っていますが,私が名古屋大学大学院国際開発研究科博士後期課程に進学した2014年にNagoya.Rというイベントで『一般化線形混合モデル入門の入門』というタイトルで発表をしました。

ちょうど2012年に下記のレビュー論文が出ていて,それをもとにRでどうやってやるかというのをただただ紹介したみたいな感じでした。

Cunnings, I. (2012). An overview of mixed-effects statistical models for second language researchers. Second Language Research, 28(3), 369–382. https://doi.org/10.1177/0267658312443651

一般化線形混合モデルという発表タイトルでしたが,実際は一般化ではなく線形混合モデルのやり方で,私はその後の院生生活で,反応時間を扱う研究ではガンマ分布や逆正規分布,容認性判断のような二値データを扱うデータでは二項分布を使った一般化線形混合モデルを扱うようになっていきました。

7年前はそこまでウェブ上でも特に日本語では資料が多くなかったこともあり,分野を問わず上記のスライドシェアの資料は結構閲覧されていて,D2で学振の申請書を書いたときには「Googleで一般化線形混合モデルというキーワードで検索すると上に来るのは私の資料です」みたいなことを書いたこともありました(笑)

2016年にはおもにロジスティック回帰に焦点をあてたテクニカルレポートを書きました。

田村祐(2016)「外国語教育研究における二値データの分析-ロジスティック回帰を例に-」『外国語教育メディア学会中部支部外国語教育基礎研究部会2015年度報告論集』29–82. [リンク]

そして,このテクニカルレポートで書いた内容をもとにして2019年には統計のワークショップ講師をしたこともありました。

https://github.com/tam07pb915/JACET-SIG_GLMM-Workshop

そういった流れのなかで,一般化線形混合モデルのレビュー論文のようなものもいくつか新しく出版されているので,そうしたものをまとめた内容にしようと思っています。今回はワークショップではなく「講演」なので,ハンズオンで実際に分析ができるようになるということを目指すわけではなく,(1) 分析の方法,(2) 分析結果の報告,(3) 再現性の確保,という3つの観点から一般化線形混合モデルという分析の手法について話すつもりです。(3)の再現性については,昨今の再現可能性という問題を意識してのものであり,特にこの分析手法だけに当てはまるものではありません。ただ,自分が特に強い関心を持っているのであえて今回の話に盛り込むことにしました。特に,国内の学会紀要などはこういったデータ・マテリアルの公開・共有に関してガイドラインの設定がされていません。このことは今後の研究の発展を大きく阻害すると思いますので,そういったメッセージも入っています(資料はまだアウトライン程度しかできていませんが)。

資料ができたらこの記事の最後に資料へのリンクを追記する予定です。

参加申込は下記のURLから可能で,申込みの締め切りというのは特に設けられていないということです。

https://forms.gle/Ez4GmQC2JpS4j2R49

興味のある方はぜひご参加ください。よろしくお願いします。

なにをゆう たむらゆう。

おしまい。


2021.11.07 追記

当日の資料です。

コメントを残す